Modifications of Solid Interfaces in All Solid-State Thin Film Lithium Batteries
نویسندگان
چکیده
منابع مشابه
Ii. Solid State Thin Film Lithium Batteries
Solid state thin film lithium microbatteries fabricated by pulsed-laser deposition (PLD) are suggested. During deposition the following process parameters must be considered, which are laser energy and fluence, laser pulse duration, laser pulse frequency, target composition, background gasses, substrate temperature, target-substrate distance and orientation. The effects of the variations of the...
متن کاملNew Developments in Solid Electrolytes for Thin-Film Lithium Batteries
Research on lithium-ion secondary batteries began in the 1980s because of the growing demand for power sources for portable electronic devices. After the early 1990s, the demands for higher capacities and even smaller sizes energy systems significantly increased. Further, the explosive growth in the use of limited fossil fuels and their associated environmental issues and economical aspects are...
متن کاملAll-Solid-State Lithium Batteries with Wide Operating Temperature Range
Lithium ion secondary batteries have a high voltage and a high energy density, as shown in Fig. 1, and are widely used in mobile devices such as cell phones, notebook PCs and PDAs. However, since lithium ion secondary batteries use a flammable organic liquid electrolyte, there is a risk of explosion or fire. Fire accidents can also occur due to contamination during production or from overchargi...
متن کاملAll-Solid-State Lithium-Ion Batteries with Grafted Ceramic Nanoparticles Dispersed in Solid Polymer Electrolytes.
Lithium-based rechargeable batteries offer superior specific energy and power, and have enabled exponential growth in industries focused on small electronic devices. However, further increases in energy density, for example for electric transportation, face the challenge of harnessing the lithium metal as negative electrode instead of limited-capacity graphite and its heavy copper current colle...
متن کاملSurface/Interface Effects on High-Performance Thin-Film All-Solid-State Li-Ion Batteries.
The further development of all-solid-state batteries is still limited by the understanding/engineering of the interfaces formed upon cycling. Here, we correlate the morphological, chemical, and electrical changes of the surface of thin-film devices with Al negative electrodes. The stable Al-Li-O alloy formed at the stress-free surface of the electrode causes rapid capacity fade, from 48.0 to 41...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: DEStech Transactions on Engineering and Technology Research
سال: 2018
ISSN: 2475-885X
DOI: 10.12783/dtetr/pmsms2018/24916